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Abstract— It is well known (cf., Impagliazzo and Luby
[FOCS ’89]) that the existence of almost all “interesting” cryp-
tographic applications, i.e., ones that cannot hold information
theoretically, implies one-way functions. An important excep-
tion where the above implication is not known, however, is the
case of coin-flipping protocols. Such protocols allow honest
parties to mutually flip an unbiased coin, while guaranteeing
that even a cheating (efficient) party cannot bias the output of
the protocol by much. Impagliazzo and Luby proved that coin-
flipping protocols that are safe against negligible bias do imply
one-way functions, and, very recently, Maji, Prabhakaran,
and Sahai [FOCS ’10] proved the same for constant-round
protocols (with any non-trivial bias). For the general case,
however, no such implication was known.

We make progress towards answering the above fundamen-
tal question, showing that (strong) coin-flipping protocols safe

against a constant bias (concretely,
√

2−1
2

− o(1)) imply one-
way functions.
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1. INTRODUCTION

A central focus of modern cryptography has been

to investigate the weakest possible assumptions under

which various cryptographic primitives exist. This di-

rection of research has been quite fruitful, and minimal

assumptions are known for a wide variety of primitives.

In particular, it has been shown that one-way functions

(i.e., easy to compute but hard to invert functions) im-

ply pseudorandom generators, pseudorandom functions,

symmetric-key encryption/message authentication, com-

mitment schemes, and digital signatures [10, 11, 15, 14,

22, 23, 24], where one-way functions were shown also

to be implied by each of these primitives [17].

An important exception for which we have failed to

prove the above rule, is that of coin-flipping protocols.

A coin-flipping protocol [3] allows the honest parties to

mutually flip an unbiased coin, where even a cheating

(efficient) party cannot bias the outcome of the protocol

by much. While one-way functions are known to imply

coin-flipping protocols [3, 9], the other direction is

less clear: Impagliazzo and Luby [17] showed that

negligible-bias coin-flipping protocols (i.e., an efficient

cheating strategy cannot make the common output to be

1, or to be 0, with probability greater than 1
2 + neg(n))

implies one-way functions. Very recently, Maji, Prab-

hakaran, and Sahai [19] proved the same implication for

( 1
2 − 1/ poly(n))-bias constant-round protocols, where

n is the security parameter of the protocol. We have

no such implications, however, for any other choice of

parameters.

1.1. Our Result

We prove the following theorem.

Theorem 1 (informal). The existence of a (
√

2−1
2 −

o(1))-bias coin-flipping protocol (of any round complex-
ity) implies one-way functions.1

1.2. Related Results

As mentioned above, Impagliazzo and Luby [17]

showed that negligible-bias coin-flipping protocols im-

ply one-way functions, and Maji et al. [19] proved the

same for ( 1
2 − 1/ poly(n))-bias constant-round proto-

cols. [19] also proved that of ( 1
4 − o(1))-bias coin-

flipping protocols implies that BPP �= NP. Finally, it is

well known that ( 1
2−υ(n))-bias coin-flipping protocols,

for any υ(n) > 0, implies that BPP �= PSPACE. All

the above results extend to weak coin-flipping protocols:

in such protocols, each party has a different predeter-

mined value towards which it cannot bias the output

coin.2 A quick overview on the techniques underlying

the above results, can be found in Section 1.3.3.

Information theoretic coin-flipping protocols (i.e.,

whose security holds against all powerful adversaries)

were shown to exist in the quantum world; Mochon [20]

presents an ε-bias quantum weak coin-flipping protocol

for any ε > 0. Chailloux and Kerenidis [4] present a(√
2−1
2 − ε

)
-bias quantum strong coin-flipping protocol

for any ε > 0 (which is optimal, [18]). A key step

in [4] is a reduction from strong to weak coin-flipping

protocols, which holds also in the classical world (see

Section 6 for further discussion).

1We note that our results do not apply to weak coin-flipping
protocols. See Section 6 for further discussion.

2While such protocols are strictly weaker then full-fledged coin
flipping protocols, they are still useful in many settings. For instance,
when Alice and Bob are trying to decide who is doing the dishes.



A related line of work considers fair coin-flipping

protocols. In this setting the honest party is required

to always output a bit, whatever the other party does.

In particular, a cheating party might bias the output

coin just by aborting. We know that one-way functions

imply fair (1/
√

m)-bias coin-flipping protocol [1, 6],

where m being the round complexity of the protocol,

and this quantity is known to be tight for O(n/ log n)-
round protocols with fully black-box reductions [8].

Oblivious transfer, on the other hand, implies fair 1/m-

bias protocols [21, 2], which is known to be tight [6].

1.3. Our Technique

Let (A, B) be a balanced coin-flipping protocol (i.e.,

the common output of the honest parties is a uniformly

chosen bit), and let f be the following efficiently

computable function:

f(rA, rB, i) = Trans(rA, rB)i, Out(rA, rB)

where rA and rB are the random coins of A and

B respectively, Trans(rA, rB)i is the first i mes-

sages exchanged in the execution (A(rA), B(rB)), and

Out(rA, rB) is the common output of this execution

(i.e., the coin). Assuming that one-way functions do not

exist, it follows that distributional one-way functions

do not exist either [17], and therefore there exists an

efficient inverter Inv that given a random output y of f ,

samples a random preimage of y. Concretely, for any

p ∈ poly there exists a PPT Inv such that the following

holds:

SD((X, f(X)), (Inv(f(X ′)), X ′)) ≤ 1/p(|X|) (1)

where X and X ′ are uniformly distributed over the

domain of f , and SD stands for statistical distance. In

the following we show how to use the above Inv to bias

the output of (A, B).
Note that given a random partial transcript t of (A, B),

the call Inv(t, 1) returns a random pair of random coins

for the parties that is (1) consistent with t, and (2) yields

a common output 1. In other words, one can use Inv to

sample a random continuation of t which leads to a 1-

leaf — a full transcript of (A, B) in which the common

output is 1. As we show below, such capability is an

extremely useful tool for a dishonest party trying to bias

the outcome of this protocol. In particular, we consider

the following cheating strategy A for A (a cheating

strategy B for B is analogously defined): given that the

partial transcript is t, A uses Inv to sample a pair of

random coins (rA, rB) that is consistent with t and leads

to a 1-leaf (A aborts if Inv fails to provide such coins),

and then acts as the honest A does on the random coins

rA, given the transcript t. Namely, at each of its turns A

takes the first step of a random continuation that leads

to a 1-leaf.

Assuming that Inv behaves as its ideal variant that

returns a uniform random preimage on any transcript, it

is not that hard to prove (see outline in Section 1.3.1)

that either A or B can significantly bias the outcome of

the protocol. Proving that the same holds with respect

to the real inverter, however, is not trivial. Algorithm

Inv is only guaranteed to work well on random tran-

script/output pairs, as induced by a random output of f
(namely, a transcript/output pair defined by a random

honest execution of (A, B)). A random execution of

(A, B) or of (A,B) (i.e., with one party being controlled

by the adversary) might, however, generate a query

distribution that is very far from that induced by f .

Fortunately, we manage to prove (and this is the

crux of our proof, see outline in Section 1.3.2) that

the following holds: We call a query non-typical, if its

probability mass with respect to the execution of (A, B)
(or of (A,B)) is much larger than its mass with respect

to the output distribution of f . We first show that even

if both A and B totally fail on such non-typical queries,

then either A or B can significantly bias the outcome

of the protocol assuming access to the ideal sampler.

Since on typical queries the real sampler should perform

almost as well as its ideal version, we conclude that the

cheating probability of either A or B is high, also when

the cheating strategies are using the real sampler.

1.3.1. When Using the Ideal Sampler: Consider a

mental experiment in which the cheating strategies A
and B (both using the ideal sampler) are interacting

with each other. It is not hard to see that the common

output of (A,B) in this case is always one. Moreover,

the transcript distribution induced by such an execution,

is that of a random execution of the “honest” protocol

(A, B) conditioned that the common output is 1 (i.e.,

a random 1-leaf). In particular, the probability of each

1-leaf with respect to a random execution of (A,B) is

twice its probability with respect to (A, B).
The probability of a 1-leaf t to happen, is the product

of the probabilities that in each stage of the protocol the

relevant party sends the “right” message. Such a product

can be partitioned into two parts: the part corresponding

to the actions of A, and the part corresponding to the

actions of B. In particular, either A or B contributes a

factor of at least
√

2 to the probability of t. Namely, the

probability of a 1-leaf t in either (A, B) or in (A,B),
is
√

2 times its probability in (A, B). It follows that the

common output of either (A, B) or (A,B) is one with

probability at least
√

2 · 12 = 1/
√

2. That is, either A or

B can bias the output of (A, B) by 1√
2
− 1

2 =
√

2−1
2 .



1.3.2. Using the Real Sampler: By the discussion

we made earlier, it suffices to prove that the following

holds: either A or B can bias the output of the protocol

significantly, when given access to the ideal sampler,

even if both cheating strategies are assumed to fail

completely when asking non-typical queries.

Towards this end, we partition the non-typical queries

into two: (1) queries (t, 1) such that the probability

to visit t with respect to (A, B) or (A,B), is much

larger than this probability with respect to f (i.e., super

polynomial in n larger than Pr[f(X) = (t, ∗)]), and (2)

queries (t, 1) such that the probability of ending in a 1-

leaf conditioned on t is small (i.e., Pr[f(X) = (t, 1) |
f(X) = (t, ∗)] is small). In the following we focus on

the first type of non-typical queries, which we find to

be the more interesting case.

For q ∈ N, let UnBalA contain the transcripts whose

weights induced by (A, B) are at least q times larger

then their weights with respect to the honest protocol

(UnBalB is defined similarly). Using similar intuition

to that used in Section 1.3.1, one can show that the

probability of every transcript t induced by a random

execution of (A,B) is at most twice its probability

with respect to a random (honest) execution of (A, B).
Hence, the following “compensation effect” happens:

if the probability of a transcript t with respect to (a

random execution of) (A,B) is q times larger than its

probability with respect to (A, B), then the probability

of t with respect to (A, B) is q times smaller than this

value. We conclude that UnBalA is visited by BIdeal with

probability at most 1/q.

To show that both A and B can be assumed to

fail completely when asking queries in UnBalA (the

argument for UnBalB is analogous), we consider an-

other mental experiment. In this mental experiment, we

replace the probabilities of ending up with a 1-leaf,

upon reaching a transcript in UnBalA by associating

a new values to each such transcript. These values

are no longer probability measures. Specifically, for all

t ∈ UnBalA, we replace the probability that (A, B)
ends up in a 1-leaf conditioned on t with the value

1/
√

q and replace the probability that (A,B) ends up

in a 1-leaf conditioned on t with the value
√

q (this is

only a mental experiment, so we can allow these values

to be larger than 1). Using a similar approach to that

used in Section 1.3.1, we can prove that in the above

experiment, it is still true that either A or B biases the

output of (A, B) by at least
√

2−1
2 .

Finally, we note that we can safely fail both cheating

strategies on UnBalA almost without changing their

overall success probability in the above experiment.

Specifically, A will not suffer much since it visits these

nodes with probability at most 1 and gains only 1/
√

q
upon visiting them. On the other hand, B will not suffer

much since it visits these nodes with probability at

most 1/q and gain only
√

q upon visiting them (hence,

these nodes contributes at most 1/
√

q to its overall

success). Observe that the probabilities induced by an

execution of (A, B) (or of (A,B)) on typical transcripts

in the real scenario, as well as, the success probability

of the adversary upon visiting these transcripts, are

exactly the same as in the above mental experiment. We

conclude that either A or B biases the output of (A, B)
by

√
2−1
2 − 1/ poly, even assuming that both cheating

strategies totally fail on non-typical queries.

1.3.3. Perspective: The sampling strategy we use

above was inspired by the “smooth sampling” approach

used by [5, 12, 16] in the setting of parallel repetition

of interactive arguments to sample a random wining

strategy for the cheating prover. Such approach can

be thought of as an “hedged greedy” strategy, using

the recent terminology of Maji et al. [19], as it does

not necessarily choose the best move at each step (the

one that maximize the success probability of the honest

strategy), but rather hedges its choice according to the

relative success probability. [19] used a different hedged

greedy strategy to bias any coin-flipping protocol by
1
4 − o(1). They then show how to implement this

strategy using an NP-oracle, yielding that ( 1
4 − o(1))-

bias coin-flipping protocols imply BPP �= NP. Their

proof, however, does not follow through using a one-

way functions inverter, and thus, does not yield that such

protocols imply that one-way functions do not exist.

Impagliazzo and Luby [17] used a more conservative

method to bias a coin-flipping protocol by 1√
m

(where

m is the protocol round complexity). Their cheating

strategy (which, in turn, was inspired by [7]) follows

the prescribed one (i.e., acts honestly), while deviating

from it at most once through the execution. In partic-

ular, at each step it estimates its potential gain from

deviating from the prescribed strategy. If this gain is

large enough, it deviates from the prescribed strategy,

and then continues as the honest party would. Since

their strategy only needs to estimates the potential gain

before deviating from the prescribed strategy, it is rather

straightforward to prove that it can be implemented

using a one-way function inverter (in particular, the

query distribution induced by their strategy is simply

the output distribution of the one-way function).

Finally, we mention that the cheating strategy used by

[19] to prove their result for constant-round protocols,

takes a very different approach then the above. Specif-



ically, their cheating strategy uses a one-way function

inverter to implement (with close resemblance) the well-

known recursive PSPACE-attack on such protocols.

Unlike the above greedy strategies, the running time

of this recursive approach is exponential in the round

complexity of the protocol (which is still efficient for

constant-round protocols).

Paper Organization

General notations and definitions used throughout the

paper are given in Section 2. Our adversarial strategy to

bias any coin-flipping protocol is presented in Section 3.

In Section 4 we analyze this strategy assuming access

to an ideal sampler. Finally, in Section 5 we extend this

analysis to the real sampler. Due to space limitation

some of the proofs are omitted, and can found in [13].

2. PRELIMINARIES

2.1. Notation

Given a two-party protocol (A, B) and inputs iA
and iB, we let Out(A(iA), B(iB)) and (A(iA), B(iB))
denote the (joint) output and transcript respectively,

of the execution of (A, B) with inputs iA and iB.

Given a measure M over a set S, the support of

M is defined as Supp(M) := {s ∈ S : M(s) > 0}.
The statistical distance of two distributions P and Q
over a finite set U , denoted SD(P,Q), is defined as
1
2 ·

∑
u∈U |P (u)−Q(u)|. We use the following notion

of measure dominance.

Definition 2 (dominating measure). A measure M is
said to δ-dominate a measure M ′, if:

1) Supp(M ′) ⊆ Supp(M), and
2) M(y) ≥ δ ·M ′(y), for every y ∈ Supp(M ′).

2.2. Coin-Flipping Protocols

In a coin-flipping protocol the honest execution out-

puts an unbiased coin, where no (efficient) cheating

party can bias the outcome by much. This intuitive

description is captured using the following definition.

Definition 3. A polynomial-time protocol (A, B) is a
δ-bias coin-flipping protocol, if the following hold:

1) Pr[Out(A, B)(n) = 0] = Pr[Out(A,B)(n) =
1] = 1

2 , and
2) for any PPT’s A and B, any c ∈ {0, 1} and all large

enough n:
Pr[Out(A, B)(n) = c], Pr[Out(A,B)(n) = c] ≤
1
2 + δ(n).

In the case that δ(n) = neg(n), we simply say that
(A, B) is a coin-flipping protocol.

2.3. One-Way Functions and Distributional One-Way
Functions

Definition 4 (one-way functions). A polynomially-
computable function f : {0, 1}n 	→ {0, 1}�(n) is one-
way, if the following holds for any PPT A.

Pr
y←f(Un)

[A(y) ∈ f−1(y)] = neg(n)

Definition 5 (γ-inverter). Let f : D → R be a
deterministic function. An algorithm Inv is called a γ-
inverter of f the following holds.

SD ((U, f(U)), (Inv(f(U ′)), f(U ′))) ≤ γ,

where U, U ′ are uniformly distributed in D.

We call a 0-inverter of f , an ideal inverter of f .

Alternatively, an ideal inverter of f is an algorithm

that on y ∈ R, returns a uniformly chosen element

(preimage) in f−1(y).

Lemma 6 ([17, Lemma 1]). Assume that one-way func-
tions do not exit, then for any polynomial computable
function f : {0, 1}n 	→ {0, 1}�(n) and any p ∈ poly,
there exists a PPT Inv that is a 1/p(n)-inverter of f , for
infinitely many n’s.

Note that nothing is guaranteed when invoking a good

inverter for f (i.e., γ-inverter for some small γ) on an

arbitrary distribution D. Yet, the following lemma states

that if D is dominated by output distribution of f , then

such good inverters are useful.

Lemma 7. Let f : D → R be a deterministic function
and let Ideal be an ideal inverter of f . Let A be an
oracle-aided algorithm that makes at most m oracle
queries to Ideal, where all A’s queries are in R. For
i ∈ [m], let the random variable Qi describe the i’th
query of A, where Qi is set to ⊥ if the i’th query is not
asked, and define the measure Mi as follows:

Mi(y) =

{
Pr[Qi = y] y ∈ R,

0 otherwise.

The probability is taken over the randomness of the
algorithm A and the randomness of the ideal inverter
Ideal. Let U denote the uniform distribution over D
and suppose that f(U) δ-dominates Mi for all i ∈ [m]
(according to Definition 2), then the following holds for
any γ-inverter Inv of f .

SD
(
AIdeal, AInv

)
≤ γ · (m + 1)

δ
.

Proof: Omitted.



3. THE ATTACK

Let (A, B) be a coin-tossing protocol. In the following

we define adversarial strategies for both A and B to bias

the output of the protocol towards 1. The strategies for

biasing the output towards 0 are defined analogously.

3.1. Notation

We associate the following random variables with

an (honest) execution of (A, B). Throughout, we let

n be the security parameter of the protocol and omit

it whenever its value is clear from the context. We

assume for simplicity that the protocol’s messages are

single bits, and naturally view a valid execution of the

protocol as a path the binary tree T = Tn, whose nodes

are associated with all possible (valid) transcripts. The

root of T , corresponding to the empty transcript, is

denoted by the empty string λ, and the children of a

node α (if exist) are denoted by α ◦ 0 and α ◦ 1 (‘◦’
stands for string concatenation), corresponding to the

two (possibly partial) executions with these transcripts.

A node with no descendants is called a leaf, where we

assume for simplicity that a non-leaf node has exactly

two descendants. Given a node α, we let |α| denote its

depth, and for i ∈ [|α|] let αi denote the prefix of length

i of α, which describes the i’th node on the path from

λ to α (e.g., α0 = λ).

We call a transcript α an A node [resp., B node], if

this is A’s [resp., B’s] turn to send the next message,

where without loss of generality the root λ is an A
node. We also assume that the parties always exchange

m = m(n) messages, and that each party uses t = t(n)
random coins, denoted rA and rB respectively. Given a

pair of random coins (rA, rB), we let Leaf(rA, rB) =
(A(rA), B(rB)) (i.e., the leaf transcript induced by the

execution of (A(rA), B(rB))).
For α ∈ T , let Uni(α) denote a random sample of

(rA, rB), conditioned on Leaf(rA, rB)|α| = α. Given

random coins rA ∈ {0, 1}t, we let A(rA; α) be the

next message sent by A with random coins rA after

seeing the transcript α, and define the random variable

A(α) as A(RA; α), where (RA, ∗)← Uni(α). [B(rB; α)
and B(α) are defined analogously.] Finally, we assume

without loss of generality that the transcript of an

(honest) execution of the protocol always defines an

output, 0 or 1 (consistent for both parties). For a leaf

α, we let Vα be the output of the protocol determined

by this leaf, where if α is an internal node, we define

Vα as

Vα = E
(rA,rB)←Uni(α)

[VLeaf(rA,rB)] (2)

Namely, Vα is the probability that (A, B) outputs 1,

conditioned that α is the current transcript.

Similarly, we associate the following random vari-

ables with an execution of (A, B), where A is a

cheating strategy for A: we denote the random coins

used by A by rA, and for α ∈ T let UniA(α)
denote a random sample of (rA, rB), conditioned on

(A(rA), B(rB))|α| = α. Given random coins rA ∈
{0, 1}∗, we let A(rA; α) be the next message sent by A
with random coins rA after seeing the transcript α, and

define the random variable A(α) as A(RA; α), where

(RA, ∗) ← UniA(α). [B(rB; α) and B(α) are defined

analogously.] Finally, we define V Aα as

V Aα = E
(rA,rB)←UniA(α)

[V(A(rA),B(rB))], (3)

where we set V(A(rA),B(rB)) = 0, if (A(rA), B(rB))
aborts. Namely, V Aα is a lower bound on the probability

that (A, B) outputs 1, conditioned that α is the current

transcript. [V Bα is defined analogously.]

3.2. The Adversary A
We now present an adversarial strategy A for A,

designed to bias the outcome of the protocol towards 1
(the adversarial strategy B for B is defined analogously).

In each round A uses a “sampling oracle” Samp to

sample a value for the coins of A, and then acts as

the (honest) A would, given these coins and the current

transcript. Roughly speaking, the objective of Samp is

to return a random pair of coins (rA, rB) consistent with

α (i.e., Leaf(rA, rB)|α| = α), which leads to a 1-node

(i.e., VLeaf(rA,rB) = 1). In the following we analyze

the success probability of A when using different im-

plementations for Samp. Specifically, in Section 4 we

consider an “ideal sampler” (which is not necessarily

efficient). Then, in Section 5, we consider a more

realistic implementation of the sampler (specifically,

using the inverter that will stem from the assumption

that one-way function do not exist). Before describing

and analyzing each of these samplers, we first give the

formal description of A.

Algorithm 8 (Adversary A).
Input: Security parameter n.
Oracle: Samp.
Operation: Let α be the current transcript.

1) Halt if α is a leaf node.
2) Let (rA, ∗)← Samp(α). Abort if rA =⊥.
3) Send A(rA; α) to B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given an instantiation of Samp, we view ASamp as

a random algorithm whose random coin are those used

by Samp (independent coins for each call).



4. USING THE IDEAL SAMPLER

Our “ideal sampler” Ideal is defined as follows: on

input α ∈ T , Ideal returns a random sample (rA, rB)←
Uni(α), conditioned on VLeaf(rA,rB) = 1. Where Ideal
returns ⊥, in case Vα = 0. The following lemma asserts

that at least one of the parties has a good cheating

strategy given oracle access to this sampler.

Lemma 9. For any n ∈ N and any transcript α ∈ Tn,
it holds that

V A
Ideal

α · V BIdeal

α ≥ Vα.

Proof: Omitted.

Observe that when Vλ = 1/2, it holds that either

V A
Ideal

λ ≥ 1/
√

2 or V B
Ideal

λ ≥ 1/
√

2. Namely, eitherAIdeal

or BIdeal can bias the output of the protocol by 1√
2
− 1

2 .

5. MOVING TO AN EFFICIENT SAMPLER

Our goal in this section is to use the above analysis

of the success probability of our adversaries when given

access to the ideal sampler, for analyzing their success

probability when given access to an efficient sampler.

The accuracy of such an inverter will be parameterized

by a function 1/p for some p ∈ poly. In the following

we fix such p.

Assuming that one-way functions do not exists,

our efficient sampler is defined as follows: let f :
{0, 1}t(n) × {0, 1}t(n) × {0, . . . , m(n)} be defined as

f(rA, rB, i) = Leaf(rA, rB)i, VLeaf(rA,rB)

Namely, f(rA, rB, i) outputs the i’th node in the exe-

cution of (A(rA), B(rB)) and the outcome coin induced

by the leaf transcript of this execution. Given a node

α ∈ Tn, the sampler Realp returns Invf (α, 1), where

Invf is the distributional inverter for f guaranteed by

Lemma 6 with respect to accuracy parameter 1/p.3

Notice that while Lemma 6 tells us that Invf samples

well over a random output of f , the distribution induced

by the calls of ARealp might be very different from

this distribution. While we cannot bound the difference

between these two distributions, we prove that there

exists a high-probability event conditioned upon these

distributions are close enough. Loosely speaking, we

first show that Lemma 9 still (almost) holds even if

both AIdeal and BIdeal fail on their “non-typical” queries

to Ideal – the calls that happen with provability very

different for the one induce by f . Since Realp does

similarly to Ideal on the typical queries, it follows

that V A
Realp

λ ·V BRealp

λ is almost as large as Vλ, and

3We assume for simplicity that the security parameter of the
protocol is determined by its (even partial) transcript, and therefore,
the domain of f in the calls to Invf is well defined.

therefore, either ARealp or BRealp can significantly bias

the outcome of the protocol.

In Lemma 10, stated below, we formally capture

the above intuition regarding AIdeal and BIdeal (with

access to the ideal sampler). We denote by w(α) the

probability that the node α is visited in a random

execution of (A, B) and by wA
Ideal

(α) the probability

of this visit in a random execution of (AIdeal, B).
[wB

Ideal

(α) is defined analogously.] Recall that we omit

n from the notation whenever its value is clear from the

context. Specifically, we let λ denote the root of Tn, and

Vλ = E[Out(A, B)(1n)].

Lemma 10. Let (A, B) be a coin-tossing protocol as
above. For any q ∈ poly and for any n ∈ N, there exists
a set E ⊆ {α ∈ Tn : Vα > 0} such that the following
holds:

1) For any α ∈ E , it holds that
max{wAIdeal

(α), wB
Ideal

(α)} ∈ O(q(n)5 ·w(α)·Vα),
and

2) V AE
Ideal

λ · V BE Ideal

λ ≥ Vλ − 1
q(n) ,

where AE acts as A does, but aborts if a node out-
side of E is reached. [BE is defined analogously.]

Proving Lemma 10 is the main contribution of this

section, but first let us use it for proving Theorem 11.

Theorem 11 (restating Theorem 1). Let (A, B) be a
coin-tossing protocol with Vλ = E[Out(A, B)(1n)].
Assuming that one-way functions do not exist, then
for any g ∈ poly there exists a pair of efficient
(cheating) strategies A and B such that the following
holds: for infinitely many n’s, for each j ∈ {0, 1}
either Pr[(A(j), B)(1n) = j] or Pr[(B(j), B)(1n) = j]
is greater than

√
V j

n − 1
g(n) , where V 1

n = Vλ and
V 0

n = 1− Vλ.

In particular, for the case of Vλ = 1
2 , one party can

“bias the outcome” of (A, B) by almost 1√
2
− 1

2 .

Proof: We focus on j = 1 where the proof for j =
0 follows analogously. We prove the theorem by consid-

ering the success probabilities of the adversaries ARealp

and BRealp (with access to an efficient inverter Invf )

on the set E ⊆ Tn guaranteed by Lemma 10. Namely,

the success probabilities of AERealp and BERealp . We

show that if Invf is “good enough”, then they will do

almost as well as AE Ideal and BE Ideal would. Towards

this end, we show that the distribution induced by f
on a random input, (1/ poly)-dominates (according to

Definition 2) both query distributions induced byAE Ideal

and BE Ideal. Thus, we can apply Lemma 7 to show that

each adversary behaves almost identically when given

access to Ideal as when given access to Invf . Finally,



we remark that, while AERealp and BERealp may not be

efficient (since they need to abort on α /∈ E), they serve

as a mental experiment and provide lower bounds on the

success probabilities of ARealp and BRealp , respectively.

We next give the formal argument.

Let g′(n) := g(n)√
V 1 , where we assume without loss of

generality that g(n) ≥ 1√
V 1 (otherwise, the statement

is trivial). Let Df (y) be the probability that a random

output of f equals y. Note that the following holds for

any α ∈ Tn:

Df (α, 1) := Pr[f(U2t(n), In) = (α, 1)]

=
1

m(n) + 1
· w(α) · Vα

where In is uniformly distributed over {0, . . . , m(n)}.
Let E ⊆ Tn be the set guaranteed by Lemma 10 with

respect to q(n) = 2 · g′(n). It follows that

max{wAIdeal

(α), wB
Ideal

(α)} ∈ O(q(n)5m(n)Df (α, 1))
(4)

for any α ∈ E . In other words, the distributions induced

by the queries of AE Ideal and BE Ideal on the range of f
are δ-dominated by the distribution of a random output

of f , for δ = 1/O(q(n)5 ·m(n)).
Fix n ∈ N such that the inverter Invf (guaranteed

by Lemma 6) is a 1/p(n)-inverter for f , and let Realp
be the sampler described above (i.e., Realp(α) returns

Invf (α, 1)). For Samp ∈ {Ideal, Realp}, let EAE
Samp

be the algorithm that emulates a random execution of

(AESamp, B) and outputs the outcome of this execution,

where AE is as in Lemma 10 [EBE
Samp

is defined anal-

ogously]. For i ∈ {0, . . . , m(n)}, let Qi be the value of

the i’th Ideal-query made in the execution of EAE
Ideal

(set to ⊥ if no such call was made). Equation (4) yields

that for Pr[Qi = (α, 1)] ∈ O(q(n)5 ·m(n) ·Df (α, 1))
any i ∈ [m(n)] and for any α ∈ E . Thus, Lemma 7

yields that

SD(EAE
Ideal

, EAE
Realp

) ∈ O
(
q(n)5 ·m(n)2

)
p(n)

< 1/8g′(n),

for the proper choice of p. Therefore,

V AE
Realp

λ ≥ V AE
Ideal

λ − 1/4g′(n).

Doing the analogous calculation for V BE
Realp

λ and using

Lemma 10, it follows that V AE
Realp

λ · V BERealp

λ ≥ V 1 −
1

g′(n) . Since V A
Realp

λ ≥ V AE
Realp

λ and V B
Realp

λ ≥ V BE
Realp

λ

(on the nodes in E the strategies AERealp and ARealp

act identically, and AERealp fails on the other nodes), it

follows that

V A
Realp

λ · V BRealp

λ ≥ V 1 − 1
g′(n)

(5)

In particular, either V A
Realp

λ or V B
Realp

λ are larger than√
V 1 − 1

g′(n) ≥
√

V 1− 1
g(n) , which completes the proof

of the theorem.

5.1. Proving Lemma 10

Towards proving Lemma 10 we identify the nodes

(queries) in T = Tn that are potentially “non typical”

(i.e., either Vα is small or max{wAIdeal

(α), wB
Ideal

(α)}
is large), and prove that by modifying AIdeal or BIdeal

to totally fail on such nodes, we hardly change their

overall success probability. The proof then follows by

taking E to be the set of “typical” nodes in T .

We next give a slightly more detailed overview of

the proof. For simplicity, in the discussion below, we

(implicitly) assume that Vλ is constant (in the formal

proof, we deal with any value of Vλ). We need to

show that the set E satisfies both of the requirements in

Lemma 10. Proving that the first requirement is satisfied

will come for free, simply by the way we define non-

typical nodes. To show that E satisfies the second re-

quirement (i.e., that AIdeal and BIdeal can indeed abort on

nodes outside E without losing much), we partition the

non-typical nodes into two sets. The first set, denoted

Small, contains those nodes for which Vα ∈ O( 1
q2 ). The

second set, denoted UnBal, contains the nodes whose

weights induced by AIdeal or BIdeal are Ω(q2) times

larger then their weight in an honest execution of the

protocol. On a very intuitive level, handling the set

Small is fairly easy: consider a mental experiment in

which we (artificially) set a new “success probability”

for such nodes, by setting V A
Ideal

α = V B
Ideal

α =
√

Vα

for every α ∈ Small. Since V A
Ideal

α · V BIdeal

α ≥ Vα, the

proof of Lemma 9 will still go through with respect

to the above experiment. Namely, it will still hold that

V A
Ideal

λ · V BIdeal

λ ≥ Vλ. To then allow aborting on nodes

in Small, we observe that neither AIdeal nor BIdeal gains

much on any node α ∈ Small (at most
√

Vα ∈ O(1/q)).
Hence, even if Small is reached with high probability,

it contributes an overall success probability of O(1/q).
Handling the unbalanced nodes inside UnBal, on

the other hand, seems much more challenging. These

nodes might have arbitrary expected values (i.e., Vα)

and are reached by one of the adversaries with high

probability. As such, they may contribute significantly

to the success probability of the cheating parties. Fortu-

nately, by making a critical use of the query distribution

induced by the ideal sampler, we are able to prove

the following “compensation lemma”: a node α whose

weight with respect to AIdeal is k times larger from

its real weight (i.e., wA
Ideal

(α) = k · w(α)), has weight

with respect to BIdeal that is k time smaller than its real



weight. Hence, the set UnBal can be separated into two

disjoint subsets UnBalA and UnBalB, where UnBalB is

almost never visited by AIdeal and UnBalA is almost

never visited by BIdeal. Now, we handle each of these

sets in a similar manner to the way we handled the

nodes in Small (for simplicity we only consider here

the set UnBalA): consider the mental experiment in

which for every α ∈ UnBalA we modify the values

of V A
Ideal

α and V B
Ideal

α such that V A
Ideal

α = 1/q and

V B
Ideal

α = q (this is only a mental experiment, so we

do not care that these values might be larger than 1).

Since V A
Ideal

α · V BIdeal

α = 1 ≥ Vα, the proof of Lemma 9

still goes through with respect to this experiment as

well. Furthermore, we can safely fail both cheating

strategies on UnBalA without changing their overall

success probability too much. Specifically, AIdeal will

not suffer much because its success probability on these

nodes is bounded by 1
q (i.e., it has gained at most

O(1 · 1
q = 1

q ) from these nodes), and BIdeal will not

suffer much since it almost never visits these nodes (i.e.,

it has gained O(q · 1
q2 = 1

q ) from these nodes).

We now work towards formalizing the above discus-

sion. We assume that Vλ ≥ 1/q, since otherwise the

lemma follows trivially, and start with formally defining

the different subsets of T we considered above. We

define the relative weights of α ∈ T as WAIdeal

(α) =
wA

Ideal
(α)

w(α) and WBIdeal

(α) = wB
Ideal

(α)
w(α) , let

UnBalA := {α ∈ T : WAIdeal

(α) > 16 · q3} (6)

UnBalB := {α ∈ T : WBIdeal

(α) > 16 · q3}, (7)

and let UnBal = UnBalA ∪ UnBalB. Finally, we let

Small := {α ∈ T \ UnBal : Vα <
1

16 · q2
} (8)

and let E = T \ (Small∪UnBal). The following fact is

immediate.

Claim 12. For any α ∈ E it holds that
max{wAIdeal

(α), wB
Ideal

(α)} ∈ O(q5 · w(α) · Vα).

To prove that E satisfies the second property of

Lemma 10, we present a pair of random variables Y A
Ideal

α

and Y A
Ideal

α , such that the following holds for λ (the root

of T ):

1) Y A
Ideal

λ · Y BIdeal

λ ≥ Vλ, and

2) V AE
Ideal

λ ≥ Y A
Ideal

λ − 1/2q and V BE
Ideal

λ ≥ Y B
Ideal

λ −
1/2q.

The variables Y A
Ideal

λ and Y B
Ideal

λ are defined below, but

intuitively they measure the success probability of AIdeal

and BIdeal respectively, in the mental experiment where

their success probability on internal nodes outside E is

changed according to the informal description above.

The above immediately yields that V AE
Ideal

λ · V BE Ideal

λ ≥
Vλ − 1

q , completing the proof of Lemma 10.

Since our goal is to bound (from below) the success

probabilities of AE Ideal and BE Ideal, it suffices to restrict

the discussion to the nodes in T that have non-zero

probability of being reached in executions with AE Ideal

and BE Ideal. This set of nodes defines a tree (which is

defined below and denoted T ′) that can alternatively be

defined as the set of all nodes in T that have no proper

ancestor in Small∪UnBal. We use the following random

variables:

Definition 13. For α ∈ T ′ := Supp((A, B)(1n)) ∩
Supp((A,B)(1n)) ⊆ T ,4 we define Y A

Ideal

α as follows
[Y B

Ideal

α is defined analogously]:

• If α ∈ E:

1) If α is a leaf, Y A
Ideal

α = Vα.
2) Otherwise, Y A

Ideal

α = Pr[AIdeal(α) = 1] ·
Y A

Ideal

α◦1 + Pr[AIdeal(α) = 0] · Y AIdeal

α◦0 .
• If α ∈ UnBal:

1) If α ∈ UnBalA, Y A
Ideal

α = 1
4q .

2) Otherwise (α ∈ UnBalB), Y A
Ideal

α = 4q.

• Otherwise (α ∈ Small), Y A
Ideal

α = 1
4q .

We emphasize that the adversaries AIdeal and BIdeal

remain exactly as before, and the random variables

Y A
Ideal

α and Y B
Ideal

α only enable us to present a refined

analysis of their success probabilities. The following

fact easily follows from similar arguments to those used

in the proof of Lemma 9.

Claim 14. For any α ∈ T ′, it holds that

Y A
Ideal

α · Y BIdeal

α ≥ Vα.

Proof: Omitted.

To complete the proof of Lemma 10, we need to

prove that the success probability of both AE Ideal and

BE Ideal is not far from the above mental experiment. We

prove the following lemma.

Lemma 15. It holds that V AE
Ideal

λ ≥ Y A
Ideal

λ − 1/2q and
V BE

Ideal

λ ≥ Y B
Ideal

λ − 1/2q.

Proof: The main tool we are using for proving

Lemma 15 is the following “compensation lemma”.

Lemma 16 (compensation lemma). Let the relative
weights of α ∈ T be as above (i.e., WAIdeal

(α) =

4We assume without loss of generality that an honest party aborts
if the other party does. Hence, T ′ is indeed contained in T .



wA
Ideal

(α)
w(α) and WBIdeal

(α) = wB
Ideal

(α)
w(α) ). The following

holds for every α ∈ T :

WAIdeal

(α) ·WBIdeal

(α) =
Vα

Vλ
.

Namely, the lemma states that a node α whose weight

with respect to AIdeal is k times larger its typical weight

(i.e., wA
Ideal

(α) > k ·w(α)), has weight with respect to

BIdeal that is (close to) k times smaller then its typical

weight. The proof of Lemma 16 is given later below.

We first use it for completing the proof of Lemma 15.

In the following we focus on analyzing the value of

V AE
Ideal

λ (the part of V BE
Ideal

λ is proved analogously). Let

F be the set of leaves in T ′. That is, F contains nodes

of two types: (i) a leaf α of the original tree T (such

that, there is no ancestor α′ of α in Small∪UnBal), and

(ii) a node α ∈ Small ∪ UnBal (such that, there is no

ancestor α′ �= α of α in Small ∪ UnBal). Furthermore,

any execution (AIdeal, B) passes through a node in F .

It follows that

Y A
Ideal

λ =
∑
α∈F

wA(α) · Y AIdeal

α (9)

V AE
Ideal

λ =
∑
α∈F

wA(α) · V AE Ideal

α (10)

Let F1 = F ∩ UnBalB, F2 = F ∩ (UnBalA ∪ Small),
and F3 = F \ (F1 ∪ F2) = F ∩ E . Lemma 16 yields

that UnBalA and UnBalB are disjoint. It follows that

F1,F2, and F3 form a partition of F , and Equation (9)

yields that

Y A
Ideal

λ ≤ 4q ·
∑

α∈F1

wA
Ideal

(α) +
1
4q

+ V AE
Ideal

λ , (11)

We next consider the probability of visiting F1 in

a random an execution of (AIdeal, B). The definition of

UnBalB yields that WBIdeal

(α) > 16 ·q3 for any α ∈ F1.

Applying Lemma 16 yields that

wA
Ideal

(α)
w(α)

= WAIdeal

(α) <
1

16 · q2
· Vα

Vλ
, (12)

for any α ∈ F1. Since Vα ≤ 1 and 1
Vλ
≤ q, we have

that wA
Ideal

(α) < w(α)
16·q2 . Plugging this into Equation (11)

yields that V AE
Ideal

λ ≥ Y A
Ideal

λ − 1/2q, as desired.

5.1.1. Putting it All Together.: We next summarize

the arguments that conclude the proof of Lemma 10.

Proof of Lemma 10: Let E be defined as in the

foregoing discussion. Claim 12 asserts that E satisfies

the first requirement of Lemma 10. For the second re-

quirement, Lemma 15 yields that V AE
Ideal

λ ≥ Y A
Ideal

λ − 1
2q

and V BE
Ideal

λ ≥ Y B
Ideal

λ − 1
2q . Hence, we have

V AE
Ideal

λ · V BE Ideal

λ ≥ Y A
Ideal

λ · Y BIdeal

λ − 2
2q

.

Claim 14 asserts that Y A
Ideal

λ · Y BIdeal

λ ≥ Vλ, and hence,

the second requirement is also satisfied, i.e.,

V AE
Ideal

λ · V BE Ideal

λ ≥ Vλ −
1
q
.

5.1.2. The Proof of the Compensation Lemma.:
Proof of Lemma 16: For α ∈ T and c ∈ {0, 1}, let

βα(c) be the probability that the next message is c given

that the transcript so far was α. I.e.,

βα(c) = Pr
(rA,rB)←Uni(α)

[Leaf(rA, rB)|α|+1 = α ◦ c]

Recall that w(α) is the probability that α is a prefix of

the full communication transcript in an honest execution

of the protocol. Assume that α = c1c2 . . . c�, then

w(α) = βα0(c1) · βα1(c2) · . . . · βα�−1(c�).
Consider now an execution of (AIdeal, B). For c ∈

{0, 1}, let βA
Ideal

α (c) be the probability that the next

message is c given that the transcript so far was α. I.e.,

βA
Ideal

α (c) = Pr[AIdeal(α) = c]. (13)

Recall that wA
Ideal

(α) is the probability that the node α
is reached in an execution of (AIdeal, B). It follows that

wA
Ideal

(α) = βA
Ideal

α0
(c1) · βA

Ideal

α1
(c2) · · ·βA

Ideal

α�−1
(c�),

Note that, if α is an A node, then βA
Ideal

α (c) = βα(c)·Vα◦c

Vα
,

and otherwise βA
Ideal

α (c) = βα(c). It follows that

WAIdeal

(α) =
�/2∏
i=1

Vα2i−1

Vα2i−2

and WBIdeal

(α) =
�/2∏
i=1

Vα2i

Vα2i−1

.

Hence, WAIdeal

(α) ·WBIdeal

(α) =
∏�

i=1
Vαi

Vαi−1
= Vα

Vλ

6. DISCUSSION AND OPEN QUESTIONS

The main open question is understanding the limits

of efficient attacks in breaking coin-flipping protocols.

Specifically (assuming one-way functions do not exist),

does there exist, for any (correct) coin-flipping protocol,

an efficient adversary that biases its output towards 0 or
towards 1 by 1

2 −1/ poly? or even by
√

2−1
2 +Ω(1)? In

light of the reduction of Chailloux and Kerenidis [4]

from (
√

2−1
2 + O(ε))-bias strong coin-flipping to ε-

bias weak coin-flipping, a positive answer (even to the

weaker form of above question, i.e.,
√

2−1
2 +Ω(1) bias),

would imply that the existence of constant-bias weak

coin-flipping protocols implies the existence of one-way

functions.



While our analysis only proves the existence of an

adversary achieving
√

2−1
2 − o(1) bias (and thus has no

direct implication to weak coin flipping), it shows that

(assuming one-way functions do not exist) for any coin-

flipping protocol there exists an efficient adversary that

can bias its output both towards 0 and towards 1, by√
2−1
2 − o(1). Hence, our attack accomplishes a harder

task than the required one. Interestingly,
√

2−1
2 is the

right bound for this more challenging task. That is, there

exists a (correct) coin-flipping protocol for which no

adversary (not even an unbounded one) can bias the

output towards 1 by more than
√

2−1
2 .5
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